
C. Kitts. “Managing space system anomalies using first principles reasoning.” IEEE Robotics & 
Automation Magazine, Sp. Issue on Automation Science, v 13 no 4, December 2006. 

 1

 
Managing Space System Anomalies Using  

First Principles Reasoning 
 

Detecting, Diagnosing and Resolving Problems 
 that Occur in Satellites and their Ground Networks 

 
Dr. Christopher Kitts 

 
Address for Correspondence – Robotic Systems Laboratory, Santa Clara University, 500 El 
Camino Real, Santa Clara, CA 95053; Phone: 408.554.4382; Fax: 408.554.5474 (use cover sheet); 
E-mail: ckitts@scu.edu 

 
Key Words – Anomaly Management, Fault Detection and Diagnosis, Health Analysis 

 
 

Anomalies are unexpected conditions that occur in a functional engineering system.  They must be detected, 
diagnosed and resolved in order to maintain the system in its functional role.  Managing anomalies in space systems 
is particularly challenging given their complexity and their remote orbital environment.  In this article, we describe 
our recent work in applying first principles reasoning approaches for the broad types of anomalies often encountered 
in complex space systems; specifically, we review extensions made to existing model-based fault detection and 
diagnosis techniques in order to accommodate problems other than faults and in order to resolve encountered 
anomalies.  We also describe the software algorithms we’ve developed to implement this approach.  Finally, we 
review the experimental results of applying this reasoning system while conducting mission operations for the 
Sapphire spacecraft, which was launched in 2001; during these experiments, the entire space system was modeled 
and analyzed to include both the satellite and the distributed ground operations network. 
 
Introduction - Space systems are instrumental in generating, processing, and delivering a wide variety of products 
and services.  A spacecraft’s global view, its location above the atmosphere, and its distinctive environment all 
provide unique characteristics that can be exploited for commercial, civil, and military applications.  Satellites are 
routinely used to monitor the weather, to provide communications services, to broadcast navigation signals, and to 
explore the solar system.  
 Unfortunately, the very attributes that make space systems attractive also pose considerable challenges to their 
efficient operation.  In particular, ensuring the health of a system and managing anomalous conditions is exacerbated 
by the extreme nature of the space environment and the need to remotely operate the system without the luxury of 
direct inspection.  Exacerbating these issues is the complexity of modern spacecraft and their distributed ground 
support networks, limitations on sensor information and configuration control, intermittent system connectivity due 
to orbital motion, and limitations on on-board resources such as power, communications bandwidth and 
computational capability.   
 Historically, system anomalies have been managed through the use of human-based “experiential” reasoning 
techniques.  Highly trained and experienced engineers embed their compartmentalized understanding, rules of 
thumb, intuitions, heuristics, and past experiences into a loose knowledge base composed of procedures, diagrams, 
handbooks, manuals, and remembered information.  Widespread reports in the space operations literature, as well as 
years of the author’s own experience in operating a number of space systems, attest to the significant drawbacks of 
this approach.  Human-based experiential systems suffer from high training and staffing costs, sensitivity to 
personnel changes, the impacts of human error, the inability to reuse knowledge and procedures across lifecycle 
phases and missions, the sensitivity of the knowledge base to small changes in the system, and many other factors 
[1-3].  Together, these drawbacks can result in on-orbit operations costs that constitute 25-60% of overall mission 
lifecycle costs [4]; for the $100 billion space industry, such system operations costs range in the tens of billions of 
dollars annually [5].  Declining federal outlays for space projects and increased market pressures on commercial 
space ventures are forcing the space industry to lower these costs.  As a result, new approaches for detecting, 
diagnosing and responding to system anomalies are of great interest.   
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Reasoning from First Principles - To address the drawbacks of traditional experiential reasoning approaches, 
significant research has been performed over the past three decades in the field of Model-Based Reasoning (MBR).  
In MBR, reasoning conjectures are computed from fundamental design information regarding the design of the 
engineering system; as such, MBR is often defined as reasoning from first principles.  For example, a system 
description is used to define the behavior of each component within a system and to declare the connectivity (e.g., 
the structure) of the components.  With this information, the performance of the system can be modeled or 
simulated, thus allowing the predictions of output values given values for the system’s inputs and an assumption that 
the system is operating nominally.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – Anomaly Management Process Flow.  Anomaly detection is a continuous process through 
which the observed and predicted values of system signals are checked for consistency within the operational 
system (OS; the combined set of design-time and operational-time assumptions about the system).  If 
consistent, the system is considered to be nominal.  If inconsistent, a diagnosis process is initiated in order to 
determine anomalies whose existence can explain the observed inconsistencies.  These diagnosis conjectures 
are provided to a resolution process, which computes viable resolution options such as reconfiguring the 
system or relaxing the mission requirements. 

 
 
 One of the most significant contributions in the field of MBR is a formal theory of fault detection and diagnosis 
[6,7].  This theory defines a fault as a condition within a component that prevents it from performing in accordance 
with its explicitly defined (e.g., modeled) behavior.  Stated formally, the definition of a behavior prescribes a 
specific value of a component’s output signal given the values of its inputs; mathematically, the behavior is a 
constraint on the output value.  Detection of a fault using an MBR technique is accomplished by comparing the 
outputs of the real system to the outputs of the modeled system; as shown in Figure 1, an inconsistency between 
these values is interpreted as the symptom of a fault (given a number of assumptions, such as the accuracy of the 
model, etc.).  A crucial distinction between MBR and other approaches to reasoning about faults is that MBR 
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exploits models of proper functionality (which are developed extensively in the design phase of a system) rather 
than attempting to enumerate all possible failure modes and deduce the resulting symptoms in order to drive the 
detection process [8-10]. 
 
 

FULL ADDER CIRCUIT 

 
 

This system is a conventional full adder circuit, and it has been used as a prototypical system for demonstrating 
MBR fault detection and diagnosis.  Consider the case in which the input signals are: A=1, B=0, Cin=0.  For 
nominal operation, a standard model of the system predicts that the output of the system should be: Smodel=1, 
Coutmodel=0.  However, let’s assume that observations of the system show that Sobs=0 and Coutobs=0.  The fact 
that the expected and observed values of S are inconsistent establishes Sobs as a symptom.  The interpretation of 
this and the subsequent reasoning are shown below for the established theory of fault detection and diagnosis 
and for our new theory of anomaly management. 
 
a.  Conventional Fault Detection and Diagnosis Theory – Conventional theory interprets the system as the 
symptom of a component fault (e.g., one of the components in the system is not behaving as defined in the 
model).  The diagnosis process identifies components whose relaxed behavior constraints lead to the observed 
outputs as a possible result.  For this case, this process leads to the following possible single-component 
diagnoses: {X1, X2}. 
 
b.  Extended Theory of Anomaly Management – Our extended theory allows us to consider hazardous 
component operating conditions and misconfigured inputs as possible causes of a symptom; for this example, 
let us assume that the intended temperature range for each component is -40°C to 70°C given that this is the 
range for which their behaviors are defined.  Our theory therefore interprets the symptom as the indication that 
an anomaly exists.  The subsequent diagnosis process identifies assumptions whose relaxation leads to the 
observed outputs as a possible result; these assumptions may be regarding the behavior of the components, the 
operating conditions of the components, and/or the values of the input configuration.  For this case, this process 
leads to the following possible single-component diagnoses: {X1 faulted, X1 temperature hazard, X2 faulted, 
X2 temperature hazard, input C misconfigured}.  Furthermore, the theory defines the conditions for appropriate 
resolutions, such as reconfiguring input C or sacrificing the full adder functionality; if the system included 
redundant components and/or heaters, reconfigurations taking advantage of these resources would be 
methodically generated as options. 
 
Note – It is worth noting that MBR approaches are more precise than the experiential diagnostic heuristic 
“everything upstream of the symptom.”  Such a heuristic would also imply that A or B could also be 
misconfigured, but this is not possible given that these diagnoses would lead to a value of Coutmodel that is not 
consistent with the observed value.  Furthermore, it is worth noting that the diagnostic heuristic “everything 
upstream of the symptom but not upstream of any good output values” is simply wrong since in this case it 
would exclude X1 as a valid diagnosis. 
 
 

Figure 2 – Model-Based Reasoning Example.  This example shows the results of applying MBR techniques 
to a simple system.  Results are shown for both the conventional theory of fault detection and diagnosis as 
well as for our extended theory of anomaly management. 

 
 Once the symptom of a fault has been detected, a diagnosis process isolates the specific components that may 
be faulted.  The MBR approach to identifying these components typically relies on a process known as constraint 



C. Kitts. “Managing space system anomalies using first principles reasoning.” IEEE Robotics & 
Automation Magazine, Sp. Issue on Automation Science, v 13 no 4, December 2006. 

 4

relaxation.  For a given component suspected of being faulty, its behavioral constraint is relaxed, which means that 
its output is permitted to range over its set of all valid output values.  The system is then re-simulated in order to 
compute new values for the system’s outputs.  Depending on the nature of the system, the range of valid values from 
the possibly faulted component may lead to a range of possible values for one or more of the system’s outputs.  The 
observed values from the real system are compared to these new simulated values/ranges; if the observed values are 
members of the simulated sets of possible values, then the assumed component fault is, in fact, a valid diagnosis.  
Figure 2a provides an example of fault detection and diagnosis for a very simple digital logic circuit. 
 MBR has been applied to fault detection and diagnosis in a variety of fields ranging from electronic circuitry 
[11,12] to spacecraft health management [13-16].  These applications have motivated numerous extensions to the 
basic theory in order to incorporate empirical knowledge about failures [11,17,18], to generate optimal sensing plans 
for efficient diagnosis [12], to address computational loading through the use of hierarchical models and truth 
maintenance [19-21], to incorporate time-varying behavior and observations into the analysis [22], and to address 
the task of fault recovery [23-24]. 
 
Motivation for an Extended MBR Theory – Our work involving the operation of a variety of spacecraft and other 
complex robotic systems has motivated several extensions to the aforementioned theory of fault detection and 
diagnosis.  One specific example of this involves our desire to use MBR to establish a consistent conceptual 
framework for reasoning about the variety of problems that are routinely encountered when operating complex 
satellites through networks of geographically distributed communication stations.  To wit, many things go wrong, 
and not all of them are faults given the formal definition of a fault in the previously discussed theory.  These other 
problems must also be detected, diagnosed, and ultimately resolved in order to maintain the system’s ability to 
perform its mission. 
 
 What about Component Specifications?  Consider the role that specification limits play in defining a 
component’s behavior.  For example, a component’s defined behavior is typically defined assuming specific ranges 
for temperature, input voltage, etc.  A component often has ranges over which the behavior is completely undefined.  
For example, an AND gate may have no defined behavior if its temperature specifications are exceeded.  
Furthermore, a component may have different behavioral definitions for different ranges; for example, a simple 
model of a transistor might have two behavioral definitions, one as an amplifier and the other as a switch, depending 
on whether or not the component is saturated.   
 Overall, we see that, distinct from physical possibility, the designer may intend that the component operate in a 
subset of the ranges for which behavioral definitions exist.  If the component is not operating as intended, this is a 
problem, and it is not a fault since this is not a case of a behavioral malfunction.  For example, consider an AND 
gate with a maximum temperature specification and intended temperature limit of 70°C.  If the temperature is 75 °C 
and the gate’s output is HIGH for all input combinations, then the behavioral constraint is not violated since it is 
only defined for temperatures under 70°C.  However, it is clearly an unintended functionality, and its cause is due to 
the fact it is being operated outside of its temperature limits.  Furthermore, even if the output appeared to behave 
with AND functionality, there is clearly still a problem since there is no guarantee that this may continue.  
Therefore, we see that incorporating intention into the model of the system is a crucial extension that enables a 
model-based analysis of these common situations.  We have introduced the term hazard to formally indicate that a 
specific component attribute is operating outside of its intended operating range. 
 This understanding of how component operating conditions dictate the applicability of behavioral models leads 
us to incorporate several new features into our MBR theory.  First, our model of the system must be able to represent 
behavioral conditions as well as the designers’ intended constraints on these conditions.  Second, we must be able to 
estimate these component conditions, either through observation or simulation, and then signify if these attributes 
are in unintended states (e.g., hazards).  Third, our modeling environment must be able to select and simulate the 
appropriate behavioral constraint, if any, given the estimated value of each component condition. 
 
 What about Improper Configurations?  Another problem that arises involves equipment that is not properly 
configured.  While it may be easy to dismiss these problems as operator errors that are not worthy of formal 
consideration, their all too frequent (and often embarrassing) occurrence and our need to efficiently detect, diagnose 
and resolve them have motivated us to extend our conceptual framework to address these problems.   
 To do this, we explicitly represent a system’s configuration in the description of the system.  This configuration 
is an assumption regarding the system’s inputs, and these assumptions may or may not be true (just as we have 
assumptions regarding component behavior and the intended operating ranges of the components).  In a space 
system consisting of a complex spacecraft (with hundreds or thousands of inputs) and a geographically distributed 
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ground support network with several complicated communication stations (with tens to hundreds of inputs), it is 
easy to realize that the assumed configuration may not be explicitly verified at all times, especially given that many 
of these inputs may not be directly observable via automated data collection.  We have introduced the term 
misconfiguration to formally indicate that a specific system configuration has a value other than what has been 
assumed. 
 Given the explicit representation of our configuration, we expand our MBR reasoning system in several 
additional ways.  Most importantly, we must be able to efficiently identify which configuration inputs affect a 
symptomatic output, and we must be able to re-simulate the system over the range of all possible values for those 
inputs to see if they explain the symptom.  If they do, then the fact that such a configuration input is misconfigured 
becomes a possible diagnosis. 
 
 Three Types of Anomalies - All three of these types of problems occur regularly in the field operation of 
complex engineering systems such as space systems.  We formally term these problems anomalies with the three 
types of anomalies being faults, hazards, and misconfigurations.  These anomalies are distinct; they may exist 
independently of each other, and they may interact through causal relationships.  All are potential threats to the 
health and performance of the system, and each has differing implications regarding their effect and possible 
remedies.  Being able to explicitly and formally detect, diagnose, and resolve each is fundamental to effectively 
controlling space systems in an efficient manner. 
 
An Extended Theory of Anomaly Management – We have formalized our expanded set of operational anomalies, 
as well as a complementary suite of resolution actions, into a new, more comprehensive, model-based theory of 
anomaly management [25-26].  Like the previous theory of fault detection and diagnosis, this conceptual foundation 
uses a consistency-based approach that identifies and resolves inconsistencies among assumptions in the model of 
the system and observations of the real system.  Key elements of the theory include: 
� The engineering system description, a collection of design-time model information indicating the systems 

structure, behavior, and intended use. 
� The operational system description, a collection of operational-time model information that includes the 

engineering system, the intended application requirements, and real-time configuration and observation 
data. 

� The definition of anomaly predicates for faults, hazards, and misconfigurations. 
� The definition of resolution predicates for formally over-riding operating constraints and altering a mission 

application. 
� Formal definitions for a detected symptom, a diagnosis conjecture, and a resolution action. 

 Although space limitations prevent a complete discussion of the theory in this article, Figure 3 explains the 
formal definition of a symptom as represented using first order logic; this definition is applied during the anomaly 
detection process.  The detection process involves identifying any inconsistency between observations of the real 
system and the model of our system, to include a) the system’s structure, behavior and intended operation, b) the 
intended application of the system, c) our belief that no anomalies exist, d) our initial policy of not over-riding any 
operating constraints or relaxing any mission requirements, and e) our understanding of the current configuration.   
 Diagnosis is also a reasoning process grounded in logical consistency.  In effect, diagnosis implies finding all 
possible anomaly conjectures that relax an assumption in our model in order to re-establish consistency between the 
model and our observations.  For example, assume that a fault or hazard for a particular component relaxes the 
component’s output value; if this effect ripples through the system, as determined via simulation, in order to support 
the real observations as one possible effect, then the fault and hazard are both viable diagnoses.   
 The generation of resolution options continues the use of logical consistency in order to determine the options 
that re-establish consistency between the model, the observations, and the belief in a specific diagnosis.  Resolution 
options include combinations of system reconfigurations (e.g., swap out a faulted component with its redundant unit, 
turn on the heater for an under-temperature component, etc.), constraint over-rides (e.g., explicitly accepting a 
violated component operating condition), and mission alterations (e.g., explicitly relaxing one or more system 
requirements). 

Figure 2b provides an example of these reasoning criteria for a very simple system.  It is interesting to note that 
resolution is a function of mission requirements whereas diagnosis is not; that is because resolution is a control 
action that allows the mission to be accomplished, while diagnosis is an estimation process that attempts to 
characterize the system’s state independent of its use.  It is also worth noting that the theory does not rely on pre-
defined redundancies or roles (like a component-specific heater) since a fundamental behavioral analysis is 
performed during resolution; so, functional redundancy is naturally supported such that a low temperature condition 
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might be satisfied by turning on the component heater or perhaps by turning on neighboring components that might 
also serve to heat up the component being considered (we note, however, that pre-defined redundancies and roles are 
certainly of value in focusing the search in a large problem space).   

 
Definition.  For an operational system, a symptom is a member of OBS or ATT such that: 

CNFG  ∪ {¬MIS(a)⏐a ∈ ATT}  
∪ SD ∪ {¬AB(b)⏐b ∈ BEH}  
∪ CD ∪ {¬HAZ(c)⏐c ∈ CONSTR} ∪ {¬OVR(c)⏐c ∈ CONSTR}  
∪ RD ∪ {¬ALT(r)⏐r ∈ REQ} 
∪ OBS   

   is inconsistent. 
 

Interpretation.  A symptom is an observed or predicted state value (e.g., OBS [observation] or ATT [component 
attribute]) that is inconsistent with the statements in the operational system definition.  This definition is the 
union of the following logical statements (e.g., constraints): 
• CNFG  ∪ {¬MIS(a)⏐a ∈ ATT}: The list of configuration inputs and their assumed values, with the 

assumption that none of these inputs are misconfigured. 
• SD ∪ {¬AB(b)⏐b ∈ BEH} : The list of structure and behavior statements with the assumption that none 

of the behaviors are abnormal (e.g., faulted). 
• CD ∪ {¬HAZ(c)⏐c ∈ CONSTR} ∪ {¬OVR(c)⏐c ∈ CONSTR}: The list of intended constraints on 

component operating conditions, with the assumption that none of these constraints have been violated 
(e.g., are hazards) or have been intentionally overridden. 

• RD ∪ {¬ALT(r)⏐r ∈ REQ}: The list of intended mission requirements, with the assumption that none of 
these requirements have been relaxed (e.g., altered). 

• OBS: The list of observed values. 
 

Figure 3 – Formal Definition of a Symptom.  The MBR Anomaly Management Theory consists of a 
number of formal definitions of an engineering system, an operational system, anomaly types, resolution 
actions, and management tasks.  The first management task is detection, which involves the identification of 
a symptom and which is expressed here using first order logic.  As can be seen, the definition relies on 
analyzing the consistency among our observations of the real system and our modeled assumptions regarding 
the design and use of the system. 

 
 

Overall, we emphasize the fact that the distinction among anomaly types is critical since the cause of, the 
defining criteria for, and the solution to different types of anomalies are distinct.  Nevertheless, we are able to unify 
their treatment in a single theory given that each type of anomaly represents the violation of an assumption in the 
system model.  Therefore, our anomaly management algorithms seek to identify inconsistencies among assumptions 
(detection), to isolate specific assumptions within the system model that cause these inconsistencies (diagnosis), and 
to propose actions or select assumptions to relax in order to re-establish consistency within our model (resolution). 

 
Implementing the Theory – Our current algorithmic implementation of this theory has been developed as a toolbox 
for Matlab given our extensive use of this commercially available programming environment for multi-physics 
system modeling and analysis and our desire to use it for model composition and high-performance simulation tasks 
relating to this work.  To properly implement the theory, this implementation requires a representation of the system 
as described by the theory’s engineering and operational system descriptions, and it allows mathematical statements 
to be relaxed using the anomaly and resolution predicates.  Given this, the algorithms methodically compute 
symptoms, diagnoses and resolutions in accordance with the criteria specified in the theory’s formal definitions [26].   
 Regarding the representation of the system model, a composable modeling approach has been adopted by using 
the structure data type within Matlab in order to define components with their inputs, outputs, internal states, 
behavioral definitions, etc; simple statements equating the values of component outputs to downstream component 
inputs are used to represent connections. 
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 Anomaly Management Algorithms – The anomaly management algorithms are modularly implemented, with 
separate algorithms for detection, diagnosis, and resolution. 
 The anomaly detection process is executed periodically, typically after a standard set of telemetry has been 
received during routine monitoring and certainly after a command has been sent.1  For a given input configuration, 
the model is evaluated in order to predict system outputs.  These outputs are then compared to telemetry from the 
actual space system.  Specific checks include whether the observations directly conflict with any of the 
configuration assumptions, whether the observations violate any of the intended component operating conditions, or 
whether the observations are inconsistent with the predicted observation outputs. 
 The diagnosis algorithm is invoked only when the detection algorithm identifies a symptom.  As shown in 
Figure 4, the algorithm is implemented as a two-stage process given the appropriateness of two distinct decision-
making approaches: 
� In the first stage, a production rule process compares observations with assumed configuration values and 

intended component operating ranges.  This is an efficient computational process that involves direct 
inspection of these stored assumptions.  Inconsistencies lead directly to misconfiguration and hazard 
diagnoses, respectively. 

� The second phase of the anomaly diagnosis algorithm addresses symptoms generated by inconsistencies 
between the predictions and observations of the system state.  These symptoms demand the application of a 
constraint relaxation process in order to identify their associated diagnosis conjectures.  This process is 
implemented by systematically relaxing behavioral, operating constraint and configuration assumptions 
within the OS and re-evaluating the system until the predicted state of the system is once again consistent 
with observations.  To date, versions of this algorithm phase have been implemented in order to identify 
sets of diagnoses for multi-symptom single-remaining-anomaly cases. 

 The resolution process only executes when the diagnosis algorithm returns a set of diagnosis conjectures.  For a 
specific diagnosis, the algorithm is performed by systematically considering mission alterations, constraint 
overrides, and new configurations.  The first two are easily generated: if any mission-critical system outputs or 
intended component conditions are violated, simply accepting these facts by relaxing the mission or overriding the 
constraints become resolution options.  Of course, these are usually accepted only as a last resort.  Therefore, it is 
critical to evaluate reconfiguration options.  This is done by re-evaluating the model for permutations of 
configuration options upstream of the diagnosis; new configuration combinations that result in the satisfaction of a 
violated mission requirement are saved as possible resolution options.  Finally, the three types of resolution options 
are considered in systematic combinations; minimal combinations that re-establish consistency within the system 
(given the assumed diagnosis) are saved as valid resolutions.   
 
 Performance of the Algorithms – Speed of processing is of obvious importance given the need to quickly return 
a space system to a healthy state in the event of an anomaly.  Executing on a Pentium IV PC, the current 
implementation of the algorithms execute detection, diagnosis and resolution (for a specific diagnosis) on the order 
of seconds to tens of minutes.  Broken down, detection generally occurs on the order of hundredths of seconds, 
diagnosis typically takes seconds, and resolution ranges from seconds to tens of minutes.  This is for systems with 
20-30 components (which is the general resolution of operational anomaly management performed by humans) 
which typically require hundreds of mathematical constraints.   
 To put this performance level into the proper perspective, it is important to note two facts.  First, state-of-the-
practice anomaly diagnosis and resolution in the space industry often takes hours, days, or even weeks given the 
reliance on manual and experiential processing and the fact that the engineers that perform these tasks are generally 
not the operators that perform realtime command and telemetry operations.  Second, our current implementation can 
be significantly improved given that computational performance has been sacrificed in order to promote exploratory 
implementation, to examine alternate modeling and computational approaches, and to assess the computational 
similarities in computing diagnoses and resolutions for different classes of anomalies.  Furthermore, the current 
software runs in an interpreted mode as Matlab scripts on a multi-tasking computer rather than as a set of compiled 
executable functions on a dedicated workstation; optimization of the algorithms is expected to improve their 
computational speed by more than a factor of 10 [27].  Given these facts, we believe that MBR anomaly 
management is capable of providing valuable decision support in current space system operations environments. 
 

                                                 
1 For satellite configuration control applications, cycle times for comprehensive health analysis is typically on the 
order of 1-100’s of minutes; this is often driven by limited availability and bandwidth of the communications link.  
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Figure 4 – Overview of the Diagnosis Algorithm.  This flowchart depicts the general flow of the two-phase 
diagnosis algorithm.  In the first phase, a production rule computational process compares observed and 
modeled states with configuration and operating condition constraints.   Given any identified anomalies from 
this process, any symptoms that remain unexplained are diagnosed in phase 2 using a constraint relaxation 
computational process.  The result of the diagnosis algorithm is a set of possible diagnoses. 
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 Commentary Regarding Anomaly Management Processing – There are several subtle characteristics of the 
anomaly management process worth highlighting.  First, different types of anomalies can lead to the same symptom.  
For example, consider an AND gate that has an incorrect HIGH output given to LOW inputs.  The gate may be 
faulted in a ‘stuck-HIGH’ condition, or it may have an out-of-limit temperature such that its behavior is no longer 
guaranteed to act like the AND function, or perhaps the inputs are misconfigured and they are both really HIGH.  
This many-to-one correlation makes operational anomaly management a difficult task.  Second, the ability of an 
anomaly to be observed and to affect the rest of the system is a function of the system’s configuration.  Finally, 
because anomaly observability is configuration dependent, operational anomaly management is necessarily 
parsimonious; if there is no indication of an anomaly, then no anomaly is assumed given that mission critical 
systems cannot be arbitrarily reconfigured in order to verify a healthy state. 
 MBR techniques are compatible with these characteristics, and in many cases it is these factors that highlight 
the power of MBR.  Through its ability to systematically evaluate a system’s operation from the first principles 
codified in a design description, MBR has the potential to be far more precise in its diagnosis and resolution 
conjectures compared to an experiential system, which often diagnoses problems using an “anything upstream” 
strategy. 
 
Applying the Theory to the Sapphire Space System – We have experimentally verified and validated our anomaly 
management reasoning system by applying it to the operational control of the Sapphire space system, to include the 
satellite itself as well as its distributed ground network.  Launched in 2001, Sapphire was developed by students at 
Stanford University and supports a variety of missions to include digital communications, Earth photography, and 
sensor characterization [28].  As depicted in Figure 5, the comprehensive Sapphire space system consists of the 
Sapphire microsatellite, a standalone wireless test device (which served as an always available satellite surrogate), 
several automated communication stations located throughout the United States, and a centralized mission control 
complex in the Space Technology Center building in the NASA Ames Research Park, Moffett Field, California.  
The communication stations are remotely controlled via the internet by operators in the mission operations center, 
and amateur radio is used to communicate between these stations and the satellite when it is locally in view.  The 
ground segment portion of this system, developed by students at Santa Clara University, is used to support the 
operation of a variety of other spacecraft and robotic missions [29,30]. 
 
 

                              
 
                                                 (a) The Sapphire                          (b) Mission Operations 
                                                    Microsatellite                  Center 
 

Figure 5 – The Sapphire Space System.  (a) The Sapphire microsatellite was launched in 2001.  It has been 
operated by hundreds of students and amateur radio operators around the world since that time.  Several 
geographically distributed, internet-connected communication stations have been used to support command 
and telemetry operations with the satellite.  (b) Student operators at the Center for Robotic Exploration and 
Space Technologies in the NASA Ames Research Park perform operations and mission management tasks 
for Sapphire and a variety of other spacecraft and remote robotic system. 

 
 
 Models for each element in this system have been composed, and the model-based anomaly management 
system has been used extensively for standard ground-based operation of Sapphire during the past three years; to our 
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knowledge, this is the first time that MBR technology has been applied to manage anomalies across a 
comprehensive space system that includes both a ground-based command, control, and communications segment as 
well as a space segment.  In addition, a compiled set of model parameters were incorporated into an advanced 
production rule system that is installed on the satellite and which was verified and validated during more than a year 
of mock operational experiments performed prior to launch, with the satellite being operated as if in orbit [31, 32].   
 Fortunately (or unfortunately, depending on the applicable point of view), many real and unanticipated 
anomalies involving both the satellite and the ground segment occurred during these contacts, providing many 
wonderful opportunities to exercise the anomaly management system in a realistic setting.  Many of these anomalies 
provided feedback for further refinement of the design models used by the anomaly management software in order 
to improve the resolution of reasoning or enhance processing speed through abstraction of unnecessary detail.  
Several of the most interesting anomalies are summarized in Table 1.  In these and all of the following cases, the 
anomaly management software was able to successfully detect symptoms and generate a valid set of possible 
diagnoses and resolutions: 

• Reset satellite due to low batteries, causing an incorrect CPU time. 
• Improperly executed payload procedure in which data collection was attempted from a unit that was off. 
• Unresponsive operating systems on the communication station computer. 
• Misconfigured IP address on the communication station computer (the host institution changed the IP 

address without notifying the operations team). 
• Power outage at the communication station facility. 
• Out of date Keplerian elements used by the communication station autotrack software. 
• Incorrect time setting for the communication station computer leading to inaccurate autotrack 

computations. 
• Overheating of the transmitter amplifier leading to undesired performance. 
• Misconfiguration of TNC settings by the operator. 
• Misconfiguration of autotrack software settings by the operator. 
• Failure of an antenna positioning servomotor (on several occasions). 
• Improperly executed operations procedures resulting in misconfigurations. 

 
Anomaly Examples - To provide insight into the application of the anomaly management algorithms, let us consider 
two specific anomalies. 
 The first is the on-board sensor problem detailed in the third entry of Table 1.  Figure 6 shows a simplified 
block diagram of the model for the applicable portion of the Sapphire satellite.  In this example, the desired 
operational task was to collect data from experimental infrared sensors that are one of the primary payloads on the 
Sapphire spacecraft.  When data was acquired from these parallel sensors, they were inconsistent with the expected 
values thereby triggering an initial, automated diagnosis process that returned three possible diagnoses.  Of these 
three, a possible resolution (short of altering the mission) existed for the “misconfigured sensor” conjecture.  This 
resolution, to command the sensor to its enabled configuration, was executed and solved the problem.  The speed of 
the diagnosis process, which executed in approximately 3.5 seconds, allowed the operator to properly configure the 
satellite, collect the desired sensor data, and complete other operational tasks within the 12-minute contact window. 
 For this example, it is instructive to consider the diagnoses that were not made.  Diagnoses relating to 
component power were not made given that power was being properly supplied to other units within the satellite.  It 
is also interesting to note that faulty sensors were not a diagnosis.  This is because the initial diagnosis that was 
executed assumed only a single anomaly had occurred; because the sensors are in parallel, both would have had to 
fail in order to produce the observed data.  
 For our second example we consider the “no acquisition of satellite signal” problem detailed in the second entry 
of Table 1.  In this example, no radio frequency signal was received from the satellite at the initiation of an 
attempted contact.  Successful radio contact requires a long serial string of equipment (e.g. computers, encoders, 
transmitters, antennae, etc.) to be properly configured, each of which must be properly behaving (not faulted) with 
the appropriate configuration (not misconfigured) and operating conditions (not subjected to a hazard).  For this 
particular situation, 63 diagnoses were returned in response to the “no acquisition” symptom.  These were generated 
in less than 2.5 seconds and included a wide range of fault, hazard, and misconfiguration conjectures for the 
components, their operating states, and their configuration inputs.  Rather than initiate a full resolution process for 
each of these, we initiated a set of communication station “loop-back tests” (such as attempting to establish radio 
contact with a test transmitter co-located at the communication station) in an attempt to reduce the number of 
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diagnosis conjectures.2  These tests allowed us to eliminate diagnoses for all modeling assumptions except those 
involving the antenna pointing system.  Upon manual inspection, the problem was ultimately a misaligned antenna, 
which had been moved by a maintenance worker (certainly an unplanned event!). 
 
 

  Table 1 – Examples of Managed Anomalies 
 

Contact 
Operation 

Anomaly Management 
Reasoning Products 

Conclusion of Operations Team  
 

Task 
Basic State 
of Health 

Check 

Symptoms 
Incorrect CPU Time 

 
Diagnoses 

D1: Hazardous Radiation Reset 
of CPU Time 

D2: Hazardous Power Usage 
Reset of CPU Time 

D3: Misconfigured CPU Time 
 

Resolution 
R3a: Reconfigure CPU Time via 

time reset command 
 

Interpretation: Condition occurs due to CPU reset or clock 
mismanagement.  Conclusion was CPU reset, most likely due to 
power cycle (most likely resulting from aging batteries and 
significant communications usage by amateur radio users).  
Resolution was to reconfigure CPU clock for nominal operations 
and to suspend amateur radio community use, resulting in lower 
power demand. 
 
Algorithm Performance: Full reasoning process executed in 
~2.7 seconds. Anomaly properly detected, diagnosed, and 
resolved.   

Task 
Initiation of 

Contact 

Symptoms 
No Signal Received 

 
Diagnoses 

63 diagnoses (2.43 sec) 
 

Active testing narrowed 
diagnoses to antenna pointing 

system. 

Interpretation: This was the most conceptually interesting 
ground segment anomaly.  The reasoning system properly 
isolated the antenna pointing system as being anomalous.  
Ultimately, the problem was an antenna that had a significant 
mechanical misalignment.   
 
Algorithm Performance: The reasoning system identified the 
proper subsystem via active testing, but ultimately failed to 
generate the proper explanation due to the limits of the system 
description.  

Task 
Collection of 

IR Sensor 
Data 

Symptoms 
IR sensor data at max values 

 
Possible Diagnoses  

D1: Faulted IR Sensor Enable 
line in Command Processor 

D2: Faulted A/D converter data 
line in Telemetry Formatter 

D3: Misconfigured IR Sensor 
Enable Configuration 

 
Resolutions 

R1a, 2a, 3a: Relax requirement to 
collect IR sensor data. 

R3b: Reconfigure the IR Sensor 
Enable Setting 

Interpretation: Data from the IR sensor was invalid (e.g. 
inconsistent with predicted values).  Diagnoses included a faulty 
CP IR enable line, a faulty A/D board data line, and a 
misconfigured IR enable setting; note that IR sensor faults were 
not computed since this would require 2 independent faults 
(which was not considered an option at the time).  Resolutions 
included relaxing the mission requirement to collect IR data 
(appropriate for all Dn) or to reconfigure the enable setting (for 
D3).  The reconfigure option was exercised and valid IR data was 
collected, confirming the D3 diagnosis.  Subsequent human 
analysis of this episode confirmed that the symptomatic values 
were consistent with known disabled or faulted values. 
 
Algorithm Performance: Full reasoning process executed in ~ 
3.5 sec.  System directly contributed to successful and timely 
anomaly resolution during the < 12 minute contact.  

 

                                                 
2 This type of active diagnosis (which exploits the previously discussed configuration dependency of our ability to 
draw conjectures regarding the system) is not always possible; in this case, it was permitted given that altering the 
communication station configuration did not interfere with any mission critical experiments on the satellite. 
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Figure 6 – The Sapphire Infrared Sensor Anomaly.  This diagram shows a portion of the Sapphire 
spacecraft relevant to the infrared sensor anomaly.  Poor data from both infrared sensors resulted in possible 
diagnoses that included a misconfigured enable signal from the command processor, a faulted command 
processor infrared sensor enable behavior, or a faulted analog to digital converter behavior.  The power 
system was not suspected since observations showed that it was properly providing power to other 
components.  In addition, faulted infrared sensor behaviors were not suspected since this would have required 
multiple faults, a situation not considered in the first pass of the diagnosis algorithm.  Of the three possible 
diagnoses, the misconfiguration option had a resolution other than reducing the scope of the mission.  This 
resolution was attempted through sending a command to the satellite to enable the infrared sensor line; 
luckily, this solved the problem. 
 

 
Lessons Learned - The experiments yielded a number of “lessons learned” regarding the value of the model-based 
anomaly management strategy: 

• The model-based approach provided a systematic approach to evaluating the complete solution space for 
each anomaly management task, and served as a strong complement to the advantages and disadvantages of 
the experiential techniques routinely used by human operators.  In addition, it demonstrated the power of 
using symbolic representations of engineering functionality in order to draw strong conclusions regarding 
the state of a system. 

• Human interaction with the model-based reasoning system “rubbed-off” on the human operators and 
improved their ability to systematically evaluate anomaly scenarios. 

• Discrepancies between the conclusions drawn by human operators using experiential techniques and those 
by the automated model-based system often took hours to resolve (e.g., for the human operators to 
understand why their conclusions were incorrect and/or incomplete).  It is clear that the future acceptance 
of model-based reasoning systems (and, in fact, any high performance reasoning system) will require tools 
and mechanisms for providing insight into how the results were generated. 

• Development of the design models themselves was also tedious.  This points to a need to develop design 
synthesis, editing and visualization tools.  We hope to capitalize on our current use of Matlab by using it 
and its associated visual model-building tools for composing system design models. 

• The model-based approach is not a panacea for the anomaly management process.  Rather, its power was 
demonstrated in its ability to complement other approaches which draw from experience and employ time-
saving heuristics.  In addition, there will always be a tension between the need to use simple and abstract 
models to promote speedy computation and the need to use detailed and complex models to capture 
detailed nuances of the engineering system.   
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Future Work – We have significant plans to evolve this work in the future.  Future theoretical extensions include 
addressing new anomaly classes, such as undesirable threats that a system may cause to external entities.  We also 
hope to apply the theory to the design process in order to support studies of sensor placement, command resolution, 
etc.  Improvements to our implemented processing system will focus on the incorporation of more sophisticated 
representation schemes such as hierarchical modeling, computational efficiency through optimized and compiled 
algorithms, and support of enhanced dynamic simulation and modeling frameworks using state-of-the-art tools.  
Furthermore, we have already initiated work to improve human use of our model-based system through the 
incorporation of standard model composition tools and the development of feedback that provides transparency to 
the reasoning conjectures. 
 Critical to these improvements is the application of our system to new and diverse systems that will drive our 
innovations.  In the space system domain, we are already applying extended versions of our system to new flight 
projects such as the NASA GeneSat-1 spacecraft, the University of Texas at Austin’s two-satellite FASTRAC 
formation flying mission, and Santa Clara’s own ONYX autonomy demonstration microsatellite which will support 
on-board anomaly injection for controlled, double-blind anomaly management technology validation and which is 
being developed through a grant from the Air Force Office of Scientific Research.  Furthermore, we are also 
applying our system to non-space systems such as the control of a novel, fault-tolerant vectored thruster for 
autonomous underwater robots. 
 
Summary and Conclusions – In this article, we have discussed the development of a theory of anomaly 
management that uses fundamental models of a systems structure, behavior, and intended use in order support the 
detection of symptoms, the computation of possible diagnoses, and the generation of resolution actions.  We have 
implemented a software-based reasoning system based on this theory and have applied it to the configuration control 
of a space system consisting of an on-orbit satellite and a geographically distributed network of ground 
communication and control stations.  We have found that use of this system promotes a formal and systematic 
analysis of possibilities when managing configuration anomalies in the Sapphire space system.  Furthermore, we 
believe that this approach can be extended to more complex systems through future optimization of the processing 
implementation and through incorporation of other innovations such as dynamic and hierarchical modeling.  
Overall, we are convinced of the power of MBR for its methodical, physics-based examination of the problem 
space, for its potential to efficiently leverage design-time analytic models for operational decision tools, and for its 
ability to complement other reasoning approaches in a hybrid architecture for anomaly management.  
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